Electroresponsive properties of rat central medial thalamic neurons.

نویسندگان

  • Iman T Jhangiani-Jashanmal
  • Ryo Yamamoto
  • Nur Zeynep Gungor
  • Denis Paré
چکیده

The central medial thalamic (CMT) nucleus is a poorly known component of the middle thalamic complex that relays nociceptive inputs to the basolateral amygdala and cingulate cortex and plays a critical role in the control of awareness. The present study was undertaken to characterize the electroresponsive properties of CMT neurons. Similar to relay neurons found throughout the dorsal thalamus, CMT cells assumed tonic or burst-firing modes, depending on their membrane potentials (Vm). However, they showed little evidence of the hyperpolarization-activated mixed cationic conductance (IH)-mediated inward rectification usually displayed by dorsal thalamic relay cells at hyperpolarized Vm Two subtypes of CMT neurons were identified when comparing their responses with depolarization applied from negative potentials. Some cells generated a low-threshold spike burst followed by tonic firing, whereas others remained silent after the initial burst, irrespective of the amount of depolarizing current injected. Equal proportions of the two cell types were found among neurons retrogradely labeled from the basolateral amygdala. Their morphological properties were heterogeneous but distinct from the classical bushy relay cell type that prevails in most of the dorsal thalamus. We propose that the marginal influence of IHin CMT relative to other dorsal thalamic nuclei has significant network-level consequences. Because IHpromotes the genesis of highly coherent delta oscillations in thalamocortical networks during sleep, these oscillations may be weaker or less coherent in CMT. Consequently, delta oscillations would be more easily disrupted by peripheral inputs, providing a potential mechanism for the reported role of CMT in eliciting arousal from sleep or anesthesia.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Somatovisceral interactions in the rat dorsal column nuclei

Recent studies have revealed that noxious visceral inputs travel in the dorsal column pathway, and interactions between colorectal noxious and tactile inputs occur in the ventrobasal thalamus. This investigation was to test whether the somatovisceral interactions also take place in the dorsal column nuclei (DCN). Forty-five single DCN neurons of anesthetized rats responsive to colorectal disten...

متن کامل

Somatovisceral interactions in the rat dorsal column nuclei

Recent studies have revealed that noxious visceral inputs travel in the dorsal column pathway, and interactions between colorectal noxious and tactile inputs occur in the ventrobasal thalamus. This investigation was to test whether the somatovisceral interactions also take place in the dorsal column nuclei (DCN). Forty-five single DCN neurons of anesthetized rats responsive to colorectal disten...

متن کامل

Thalamic innervation of striatal and subthalamic neurons projecting to the rat entopeduncular nucleus.

The present study analyses the anatomical arrangement of the projections linking the Wistar rat parafascicular thalamic nucleus (PF) and basal ganglia structures, such as the striatum and the subthalamic nucleus (STN), by using neuroanatomical tract-tracing techniques. Both the thalamostriatal and the striato-entopeduncular projections were topographically organized, and several areas of overla...

متن کامل

بررسی آوران های هسته های پشتی و میانی رافه به هسته MD تالاموس در Rat با استفاده از ردیاب رتروگراد HRP

In order to understand the function of mammalians serotonin system, we have to know the anatomical structure, because physiological changes are influenced through the anatomical changes. A number of thalamic nuclei are associated with functions known to be influenced by serotonergic input in brainstem, among them mediodorsal thalamic nucleus has relationship with limbic system and prefrontal co...

متن کامل

Morphology and Synaptic Organization of Non-Dopaminergic Nigral Projections to the Medio Dorsal Thalamic Nucleus of the Rat, a Study by Anterograde Transport of PHA-L

Background: Mediodorsal (MD) thalamic nucleus, which is considered to take place between extra pyramidal and limbic feedback circuit, receives projective fibers from ventrolateral neurons of reticular part of substantia nigra (SNr). In order to better understand the influence and chemical reaction of these fibers upon MD nucleus, the morphology and synaptology of them were examined in the prese...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 115 3  شماره 

صفحات  -

تاریخ انتشار 2016